

Recearch & Technology

Qualification of Cold Spray for Repair of MIL-DTL-83488 Aluminum Coatings

Stephen Gaydos ASETSDefense Workshop 9 February 2011

including suggestions for reducing	completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	arters Services, Directorate for Infor	mation Operations and Reports	, 1215 Jefferson Davis	Highway, Suite 1204, Arlington		
1. REPORT DATE 09 FEB 2011	2. REPORT TYPE			3. DATES COVERED 00-00-2011 to 00-00-2011			
4. TITLE AND SUBTITLE			5a. CONTRACT NUMBER				
Qualification of Co	8 Aluminum	5b. GRANT NUMBER					
Coatings			5c. PROGRAM ELEMENT NUMBER				
6. AUTHOR(S)		5d. PROJECT NUMBER					
			5e. TASK NUMBER				
			5f. WORK UNIT NUMBER				
	ZATION NAME(S) AND AD 16,St. Louis,MO,63		8. PERFORMING ORGANIZATION REPORT NUMBER				
9. SPONSORING/MONITO	RING AGENCY NAME(S) A		10. SPONSOR/MONITOR'S ACRONYM(S)				
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)				
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	ion unlimited					
	OTES 11: Sustainable Surf Pans, LA. Sponsored		-	Defense Worl	kshop, February 7 -		
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON				
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	47	RESI ONSIBLE LEASON		

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

Report Documentation Page

Form Approved OMB No. 0704-0188

ASC/ENVV Project Information

Engineering, Operations & Technology | Boeing Research & Technology

- POP 24 month project
 - 7-31-2007 to 9-30-2009
 - Final Report 10-30-2009
- Objectives
 - Identify Portable Cold Spray Equipment
 - Develop Procedures to Repair Damaged IVD Aluminum Coatings
 - Certify Cold Spray Process to Meet Requirements in MIL-DTL-83488
 - Cold Spray Process Can Also be Used to Repair any Damaged Aluminum Coating
 - Aluminplate, Sputter Aluminum, or CVD Aluminum
- Program Manager Brian Tobin ASC/ENVV

Cold Spray Equipment Selection Criteria

Engineering, Operations & Technology | Boeing Research & Technology

Chemical Technology

- Equipment Requirements
 - Portable
 - Easy to operate
 - Safe to operate
 - Low cost to operate
 - Apply aluminum coatings (1 to 3 mil thick)
 - Cold Spray Al coating meets MIL-DTL-83488
 - Readily available and easy to maintain
 - Off the shelf technology

Cold Spray Equipment Suppliers

Engineering, Operations & Technology | Boeing Research & Technology

Chemical Technology

- Dymet
- CGT
- K-Tech
- Delphi
- Inovati
- Centerline (Dymet)
- ARL

Previous Cold Spray Studies Conducted

Engineering, Operations & Technology | Boeing Research & Technology

Chemical Technology

- Boeing Moscow
 - Dymet Equipment
- CTMA/NCMS
 - ARL, Delphi, Centerline Equipment
- ARL
 - ARL and Centerline Equipment
- ASB Industries
 - CGT Kinetics
- Centerline
 - SST Equipment

Portable Cold Spray Equipment Selected

Engineering, Operations & Technology | Boeing Research & Technology

- Centerline SST
 - Low Pressure
 - Air @ 80 to 110 psig
 - Portable
 - Off the shelf

- Low cost
- Easy to operate and maintain
- Has potential to apply MIL-DTL-83488 Aluminum coatings

Centerline SST Cold Spray Equipment

Engineering, Operations & Technology | Boeing Research & Technology

Chemical Technology

Engineering, Operations & Technology | Boeing Research & Technology

- PO Placed February 2008
- Equipment Received May 2008
- Equipment Installed July 2008
- No Problems with Installation
 - Cold Spray Equipment Performed Flawlessly
 - Programming of Robot was Difficult
 - Required Learning a Programming Language
 - P-SEL
 - Centerline Provided Hands-On Training

Aluminum Powder Selection

Engineering, Operations & Technology | Boeing Research & Technology

Chemical Technology

Metal Group	Catalogue Number (Old Catalogue Reference #)	Typical Applications	Typical Substrates	Description	
	SST-A0017 (KSF-A017-1)	Corrosion Protection	Steel and Magnesium Alloys	Special size distribution blend of pure aluminum. Characterized with high deposition efficiency, fast build-up and hardness of HB: 27-29. Ideal for corrosion protection.	
Aluminum	SST-A0027 (KSF-A027)	Component Repair	Steel, Aluminum, Magnesium and their Alloys	General purpose aluminum-based mixture containing aluminum, zinc and alumina with fast deposit build-up speed. Good for repairing a variety of components and freeform fabrication. Good bonding strength (>4500 psi), hardness HB: 45-55 and good machinability. Can produce very thick and smooth deposition.	
	SST-A0050 (KSF-A50)	Component Repair	Steel, Aluminum, Magnesium and their Alloys	Blend of aluminum and alumina. Fast deposition and smooth surface. Good for repairing a variety of components. Zinc free coating with good bonding strength (>5000 psi). Hardness (HB: 50-60)	
	SST-A0053 (KSF-A053)	Mold Repair	Aluminum	Blend of aluminum, stainless steel and alumina. Builds up smooth and thick coatings. Has been used for aluminum mold repairs.	
	SST-A0071	Dimension restoration	Magnesium and Aluminum Alloys	Blend of aluminum and alumina with good deposit growth rate, smooth surface, very high bonding strength (>7500 psi) on Mg and Al alloys. Good for dimension restoration of both Al and Mg alloys parts.	
	SST-A0073	Bond Coating	Aluminum and its Alloys	Blend of aluminum 356 alloy, aluminum and alumina with fast buildup rate, smooth surface, very high bonding strength (>10000 psi) on aluminum and its alloys. Good for bond coat.	
	SST-A5001 (KSF-A21339)	Corrosion Protection	Steel and Magnesium Alloys	Pure aluminum powder with special size distribution for cold spray process, good deposition rate, smooth surface, good bonding strength (>4000 psi), hardness HB: 25-30 and excellent machinability. Good for corrosion protection.	

440-00239 (KSF-A017-1) - Blended Aluminum

Engineering, Operations & Technology | Boeing Research & Technology

Chemical Technology

SST-A0017 Particle Size Distribution

Engineering, Operations & Technology | Boeing Research & Technology

Optimization Test Results

Engineering, Operations & Technology | Boeing Research & Technology

Chemical Technology

- Optimum Gun Conditions to Apply a MIL-DTL-83488 Cold Spray Al Coating
 - Stand-off Distance = 0.5 inch (-0.25/+0.5)
 - Speed = 100 to 150 mm/sec
 - Line Index = 1 to 2 mm
 - Air Pressure = 90 to 100 psig
 - Temperature = 250 to 300°C
 - Flow = 20% (+/- 10%)
 - SST-A0017 Blended Aluminum Powder

Optimization Test Results (Cont.)

Engineering, Operations & Technology | Boeing Research & Technology

- Preferred Procedure for Applying MIL-DTL-83488 Cold Spray Al Coatings
 - Degrease with MPK or Desoclean 45
 - Grit Blast @ 40 to 60 psig (2 passes) with 80 grit Al Oxide (white preferred)
 - Apply 1 to 3 mil Al coating
 - 90 to 100 psig 250 to 300° C
 - Multiple Passes May Be Required
 - Glass Bead Burnish @ 40 to 60 psig with #10 Glass Beads
 - 100% Adhesion Test (Used for IVD AI Process)

MIL-DTL-83488D Certification Tests

Engineering, Operations & Technology | Boeing Research & Technology

- 3.1.1 Composition
- 3.2.1 Process
- 3.2.1.1 Cleaning
- 3.3 Areas of Deposit
- 3.4 Chromate Treatment
- 3.5 Thickness
- 3.6 Stripping of Aluminum Coating
- 3.7 Adhesion
- 3.8 Corrosion Resistance
- 3.10 Base Metal Integrity

Engineering, Operations & Technology | Boeing Research & Technology

Requirement: Coating shall be > 99% Al

CHEMICAL ANALYSIS								
Al	Cr	Cu	Fe	Mg	Mn	Si	Ti	Zn
99.86 %	< 0.005 %	< 0.005 %	0.08 %	< 0.005 %	< 0.005 %	0.05 %	0.009 %	< 0.005 %

Tested In Accordance To: ASTM-D1976 M Comment: Sample was tested as received.

Aluminum concentration reported was calculated by difference based on the essential elements reported above.

Engineering, Operations & Technology | Boeing Research & Technology

- Requirement Process shall not cause a temperature rise that has an adverse reaction between the coating and the substrate or adversely affect the substrate.
 - For example If Substrate is High Strength Steel alloy, such as 300M, 4340 or 4130, the temperature shall not exceed 400° F.
- Process Test Performed:
 - Apply thermocouples to back side of 0.040 thick steel test panel.
 - Apply a 1 to 3 mils of aluminum coating using high gun temperatures (350° C) on 4x6 inch test panel.
 - Check thermocouple readout during metal spraying to insure that temperature did not exceed 400° F.

3.2.1 Process – Test Set-Up

Engineering, Operations & Technology | Boeing Research & Technology

Chemical Technology

3.2.1 Process - Test Results (Cont.)

Engineering, Operations & Technology | Boeing Research & Technology

Chemical Technology

Engineering, Operations & Technology | Boeing Research & Technology

- Requirement Base metal shall be cleaned IAW MIL-S-5002 or equivalent prior to coating application
- Test Results
 - MIL-S-5002 Cleaning Process Used:
 - All test specimens were solvent cleaned and then abrasive cleaned by grit blasting with aluminum oxide grit (80 grit size).

3.3 Areas of Deposit

Engineering, Operations & Technology | Boeing Research & Technology

Chemical Technology

- Requirement Coating shall completely cover all visible surfaces
- Test Results
 - All cold spray aluminum coated test specimens were visually examined for coverage and found to be acceptable

3.3 Areas of Deposit – Test Results

Engineering, Operations & Technology | Boeing Research & Technology

Chemical Technology

Damaged IVD Aluminum Steel Panel

Damaged IVD Aluminum Steel Panel After Repair with Cold Spray Aluminum Showing Uniform Aluminum Coating Over Entire Surface

3.4 Chromate Treatment

Engineering, Operations & Technology | Boeing Research & Technology

Chemical Technology

- Requirement Type II specimens shall be conversion coated per MIL-DTL-5541
- Test Results
 - Iridite 14-2 conversion coat was easily applied directly to Type II Cold Spray Aluminum test specimens.
 - Specimens did not require a chemical etch or deoxidize prior to conversion coating.

3.4 Chromate Treatment – Test Results

Engineering, Operations & Technology | Boeing Research & Technology

Chemical Technology

Type II Conversion Coating on Cold Spray Al

Engineering, Operations & Technology | Boeing Research & Technology

- Thickness Requirement for Class 1 Aluminum Coating
 - 0.001 inch (Min) and thickness shall not exceed 0.003 inch.
 - Cold spray aluminum coating shall be free of any defects and base metal shall also be free of any irregularities.
- Test Procedure
 - Measure thickness on aluminum coated steel test strips with a magnetic induction thickness gage (DeFelsko Positector).
 - Aluminum coating thickness on test specimens shall be Class 1.
 - Also measure thickness and determine workmanship (see requirement 3.9) by micro-examination of metallographic cross-sections.

3.5 Thickness - Test Results

Engineering, Operations & Technology | Boeing Research & Technology

Chemical Technology

3.6 Stripping of Aluminum Coatings

Engineering, Operations & Technology | Boeing Research & Technology

Chemical Technology

- Requirement Remove cold spray aluminum coating on steel by stripping in a caustic solution, Steel parts > Rc 40 shall be hydrogen embrittlement relief baked for appropriate time and temp.
- Test Procedure
 - Strip 4 aluminum coated test strips in caustic etch to remove aluminum cold spray coating.
 - Strip in a caustic solution containing 14 to 18 ounces of sodium hydroxide per gallon of water at a temperature of 120° to 130° F.
 - Verify complete removal on two of the stripped specimens by examining surface for aluminum by SEM/EDX analysis.
 - Apply a Class 1 (1 to 3 mils) cold spray aluminum coating to the remaining two specimens and perform a glass bead burnish adhesion test on them to verify good adhesion.

3.6 Stripping – Test Results

Engineering, Operations & Technology | Boeing Research & Technology

Chemical Technology

Stripped (Top) – Recoated (Bottom)

3.6 - Stripping Test Results (Cont.)

Engineering, Operations & Technology | Boeing Research & Technology

Chemical Technology

 SEM/EDX Analyses Conducted to verify that all Cold Spray Aluminum Coating was Removed by Caustic (NaOH) Stripping Solution

SEM/EDX Analysis for Steel Surface After Stripping Cold Spray Aluminum Coating in NaOH Solution

Engineering, Operations & Technology | Boeing Research & Technology

Chemical Technology

Residual Aluminum Oxide Particles Found Embedded in Steel but No Residual Cold Spray Al Coating Found

Engineering, Operations & Technology | Boeing Research & Technology

- Requirement When tested per 4.4.2 (of MIL-DTL-83488) the adhesion of the coating shall not show separation from the base metal
- Test Procedure
 - First perform magnetic induction thickness test on cold spray aluminum coated 1x4x.040 steel strips to verify Class 1 thickness
 - Next perform glass bead burnishing tests on the cold spray aluminum coated test specimens
 - Finally perform strip rupture tests (bend-to-break) on the cold spray aluminum coated test specimens.

3.7 Adhesion – Glass Bead Burnish Test Results

Engineering, Operations & Technology | Boeing Research & Technology

Chemical Technology

Example of Good and Bad Adhesion After Glass Bead Burnishing At 60 psig with #10 Glass Beads

Test Specimen with Cold Spray Al on Steel / IVD

Engineering, Operations & Technology | Boeing Research & Technology

3.7 Adhesion – Bend-to-Break Test Results

Engineering, Operations & Technology | Boeing Research & Technology

Chemical Technology

Cold Spray Al Coating Passed Bend-To-Break Adhesion Test on Bare Steel and IVD Coated Steel

3.8 Corrosion Resistance

Engineering, Operations & Technology | Boeing Research & Technology

Chemical Technology

- Requirement When tested per 4.4.3 (of MIL-DTL-83488) the test samples shall show no evidence of corrosion of the base metal after testing per Table 1 (of MIL-DTL-83488).
- Test Procedure
 - Mask the uncoated edges and back side of 4x6x0.040 cold spray aluminum coated steel test specimens with masking tape
 - Subject the masked test specimens to ASTM B 117 neutral salt spray for:
 - 504 hrs. minimum for Class 1, Type I specimens
 - 672 hrs. minimum for Class 1, Type II specimens
 - Look for red rust after required exposure times and no red rust is passing

3.8 Corrosion Resistance – Test Results

Engineering, Operations & Technology | Boeing Research & Technology

1000 Hours in ASTM B 117 (Scribed Corrosion Test) –
Cold Spray Al on Steel (Left) and Cold Spray Al on Damaged IVD Al (Right) –
Copyright © 2010 Boeing. All rights reserved.

No Red Rust Observed on Scribed Test Panels

EDT TE Sub Template.ppt | 35

3.10 Base Metal Integrity

Engineering, Operations & Technology | Boeing Research & Technology

- Requirement For aluminum parts, after application of cold spray aluminum coating, check the Rockwell B hardness and verify that hardness did not vary by 3 points and still meets the hardness range for the aluminum alloy and temper being inspected.
- Test Procedure
 - Apply cold spray aluminum to two 3x6 pieces of 7075-T6 aluminum
 - Coat one at 250° C and the other at 300° C spray gun temperatures
 - Check hardness and conductivity before and after cold spray application

3.10 Base Metal Integrity – Test Results

Engineering, Operations & Technology | Boeing Research & Technology

Specimen		Results HR _b	Pre Coating	(% IACS)
Plate 1		91.7		32.9
		91.8		
	_	92.0		
	Average	91.8		
Dista 0		04.7		20.0
Plate 2		91.7		33.0
		91.8		
	_	91.9		
	Average	91.8	46. 0 4	
			After Coating	
Plate 1		92.2		
300°C		92.3		
300 3		92.5		
	Average -	92.3		32.8
	, wordgo	02.0		02.0
Plate 2	Not Done.			
250°C				

Health Risk Assessment

Engineering, Operations & Technology | Boeing Research & Technology

Chemical Technology

- HRA of Cold Spray Equipment was Performed at Boeing – STL
 - Air Force does not want to introduce a hazardous coating process into their ALCs (Air Logistic Centers)
 - New Cold Spray Aluminum Coating Process Shall Not be Harmful to Workers or Environment
 - HRA Requirements specified in:
 - AIR FORCE MANUAL 48-153 (28 MARCH 2007)

HRA for Cold Spray Aluminum Technology

Engineering, Operations & Technology | Boeing Research & Technology

Chemical Technology

- Parameters Used For Operation Of Cold Spray Unit
- Gas Air
- Pressure 90 to 100 psig
- Gas Temperature 250 to 300°C
- Stand-off Distance ~ 0.5 inch
- Travel Speed ~ 100 to 150 mm/sec
- Line to Line Index ~ 1 to 3 mm
- Aluminum Powder KSF-AL0017, Centerline
- Powder Flow Rate Setting 20 to 30%
- Operation Mode Manual
- Location of Test Boeing Parking Lot

Cold Spray Equipment Used for HRA

Engineering, Operations & Technology | Boeing Research & Technology

Monitoring For Aluminum Particles During Portable Cold Spray Operation Engineering, Operations & Technology Boeing Research & Technology Chemic

Chemical Technology

Copyright © 2010 Boeing. All rights reserved. EOT_TE_Sub_Template.ppt | 41

HRA Results for Cold Spray Equipment

Engineering, Operations & Technology | Boeing Research & Technology

Chemical Technology

Average Total Dust: 0.25 mg/m3
Peak Total Dust: 0.51 mg/m3
Average Respirable Dust: 0.073 mg/m3
Peak Respirable Dust: 0.081 mg/m3

<u>OSHA PEL</u> – 15 mg/m³ for Total Dust 5 mg/m³ for Respirable Fraction <u>NIOSH REL</u> – 10 mg/m³ for Total Dust 5 mg/m³ for Respirable Fraction <u>ACGIH TLV</u> – 10 mg/m³ for Metal Dust

Recommended Personal Protection Equipment (PPE)

Engineering, Operations & Technology | Boeing Research & Technology

Chemical Technology

- Safety glasses with face shield; or safety goggles
- Filtering face piece respirator (i.e. dust mask) if face shield not utilized
- Disposable gloves (any)
- Disposable coveralls

Engineering, Operations & Technology | Boeing Research & Technology

- Centerline SST Cold Spray Equipment Can Be Used to Apply MIL-DTL-83488 Aluminum Coatings
 - Providing that proper materials and processes are carried out.
- Testing was conducted to repair damaged IVD
 Aluminum but Cold Spray Aluminum process could
 also be used to repair damaged Alumiplate, Sputter
 Aluminum, CVD Aluminum and Ionic Liquid Aluminum
 Coatings.
- Additional work is required to use the Cold Spray process to repair damaged Alclad Aluminum Coatings
 - Additional requirements apply for qualifying an Alclad repair process (e.g. specular reflectance)

Questions?

Engineering, Operations & Technology | Boeing Research & Technology

Chemical Technology

